DNA at 60

by Donna Dickenson Donna Dickenson, Emeritus Professor of Medical Ethics and Humanities at the University of London, is the author of the forthcoming book Me Medicine vs. We Medicine. 06.05.2013

LONDON – On April 25, 1953, Francis Crick and James Watson published a one-page paper that many believed would revolutionize biological research. Building on the work of Rosalind Franklin and Maurice Wilkins, they had discovered DNA’s double-helix structure, providing the first glimpse into how organisms inherit and store biological information. But, 60 years later, has their discovery really had the transformative impact that the world expected?

The media marked the publication’s 60th anniversary with much fanfare, hailing the breakthrough that “ushered in the age of genetics,” and calling it “one of the most important scientific discoveries of all time.” The British newspaper The Guardian featured the headline, “Happy Birthday, DNA! The golden moment that changed us all.” 

To some extent, they are right. The finding forms the basis of genetics and has opened up promising new research areas, such as synthetic biology, in which biological systems are created or modified to perform specific functions. Likewise, it has facilitated important innovations, such as pharmacogenetic cancer treatment, in which drugs target specific genetic defects within cancer cells.

Moreover, DNA has acquired a certain mystique in popular culture. According to Dorothy Nelkin and Susan Lindee, it has become a sacred entity – the modern equivalent of the Christian soul, an individual’s essence. While some forms of biological determinism, such as the belief that race or gender dictates a person’s destiny, have been widely rejected, the idea that a person can be genetically predisposed, say, to get into debt, become a ruthless dictator, or vote regularly in elections remains socially acceptable. 

But, almost from the beginning – and most intensely since 1971, when Time magazine published a special section entitled “The New Genetics: Man into Superman” – science and society alike have tended to overestimate the impact of genetics. When the Human Genome Project published the first draft of the fully sequenced human genome in 2000, Henry Gee, an editor of the journal Nature, predicted that scientists would be able “to alter entire organisms out of all recognition to suit our needs and tastes” by 2099. “We will have extra limbs, if we want them,” he asserted, “maybe even wings to fly.”

Thirteen years later, Gee’s prediction looks increasingly unlikely, with the Human Genome Project so far having failed to meet expectations. Indeed, in 2010, the science writer Nicholas Wade lamented that, a decade after the project was launched, geneticists were “almost back to square one in knowing where to look for the roots of common disease.” 

For example, a 12-year study of 19,000 white American women found that 101 genetic markers that had been statistically linked to heart disease had no predictive value. Self-reported family histories, by contrast, proved very accurate in predicting the disease.

In fact, most diseases are not caused by single genes. As a result, after a few early successes with atypical single-gene disorders such as Huntington’s disease, progress has stalled. Common variants typically explain a small fraction of genetic risk.

Genetics has been a source of particularly high hopes when it comes to cancer treatment. Between 1962 and 1985, cancer-related deaths in the United States rose by 8.7%, despite the use of aggressive chemotherapy drugs and radiation therapy, highlighting the dangers of a one-size-fits-all approach to treatment. An understanding of the genetic determinants of patients’ therapeutic response, it was believed, would enable doctors to develop individualized treatment programs, sparing more responsive patients from harmful overtreatment. 

But patients are not the only variable. Cancer, too, is heterogeneous, even in patients with the same diagnosis. After sequencing the entire genomes of 50 patients’ breast cancer tumors, researchers found that only 10% of the tumors had more than three mutations in common. According to a recent study mapping genetic mutations in 2,000 tumors, breast cancer can actually be divided into ten subgroups.

Similarly, a genome-wide analysis of malignant cells from four kidney-cancer patients showed that, while they were related, they had mutated in many different directions. Two-thirds of the genetic faults identified were not repeated in the same tumor, let alone in any other metastasized tumors in the body. Given that a pharmacogenetic drug targets one mutation in the tumor, it will not necessarily work on the other mutations. In addition, as the cancer adjusts to the drug, further mutations are likely to occur, diminishing the drug’s efficacy.

To be sure, pharmacogenetics has made a profound difference for some patients. Barbara Bradfield, one of the original subjects in research trials for the pharmacogenetic cancer drug Herceptin, has now been stable on the drug for more than 20 years. But such success stories are far too rare to constitute a “golden age” of genetics.

The high price of such drugs is limiting their impact as well. Herceptin can cost up to $40,000 annually, and newer cancer drugs cost even more, making them prohibitively expensive for most patients. 

The US Supreme Court is currently faced with the question of whether genes can be patented. If the court upholds the biotechnology company Myriad Genetics’ patents on two genes which, in some variants, are linked to higher risk for breast and ovarian cancer, the company will retain exclusive rights to use the genes in research, diagnosis, and treatment for two decades, preventing rivals from developing cheaper alternatives. Women have already been denied access to a diagnostic test, because insurers refuse to pay the company’s high prices.

Manufacturers claim that gene patents, which now cover 25-40% of the human genome, are vital to recouping their investments. But such patents mar DNA’s “birthday” celebrations for the patients who stand to benefit from the fruits of genetic research – if only they could afford them.


Donna Dickenson, Emeritus Professor of Medical Ethics and Humanities at the University of London, is the author of the forthcoming book Me Medicine vs. We Medicine.


Copyright: Project Syndicate, 2013.


This article is brought to you by Project Syndicate that is a not for profit organization.

Project Syndicate brings original, engaging, and thought-provoking commentaries by esteemed leaders and thinkers from around the world to readers everywhere. By offering incisive perspectives on our changing world from those who are shaping its economics, politics, science, and culture,  Project Syndicate has created an unrivalled venue for informed public debate. Please see: www.project-syndicate.org.

Should you want to support Project Syndicate you can do it by using the PayPal icon below. Your donation is paid to Project Syndicate in full after PayPal has deducted its transaction fee. Facts & Arts neither receives information about your donation nor a commission.

Book Description

Me Medicine vs. We Medicine: Reclaiming Biotechnology for the Common Good by Donna Dickenson

June 11, 2013

Personalized healthcare -- or what the award-winning author Donna Dickenson calls "Me Medicine" -- is radically transforming our longstanding, "one-size-fits-all" model. Technologies such as direct-to-consumer genetic testing, pharmacogenetics in cancer care, private umbilical cord blood banking, and neurocognitive enhancement claim to cater to an individual's specific biological character. In some cases, these technologies have shown powerful potential, yet in others, they have produced negligible or even negative results. Whatever is behind the rise of Me Medicine, it isn't just science. So why is Me Medicine rapidly edging out We Medicine, and how has our commitment to collective health suffered as a result?

In her balanced, provocative analysis, Dickenson examines the economic and political factors fueling the Me Medicine phenomenon and explores whether it may, over time, damage our individual health as well as our collective well-being. Historically, it is the measures of "We Medicine," such as vaccination, that have radically extended our life spans, but Dickenson argues that we've lost sight of that truth in our enthusiasm for "Me Medicine." She explores how personalized medicine illustrates capitalism's flexible talent for creating new products and markets where none existed before -- and how this, rather than scientific plausibility, goes a long way toward explaining private umbilical cord blood banking and retail genetics.

Drawing on up-to-date scientific evidence, Dickenson critically examines four possible hypotheses driving our Me Medicine moment: a growing sense of threat in our society; a wave of patient narcissism; corporate interests in creating new niche markets; and the dominance of personal choice as a cultural value. She concludes with important and original insights from political theory emphasizing a conception of the commons and the steps we can take to restore its value to modern biotechnology.

Rate this article

Click the stars to rate

Recent articles