Feb 12th 2016

Gravitational waves discovered: top scientists respond



One hundred years ago, Albert Einstein published his general theory of relativity, which described how gravity warps and distorts space-time.

While this theory triggered a revolution in our understanding of the universe, it made one prediction that even Einstein doubted could be confirmed: the existence of gravitational waves.

Today, a century later, we have that confirmation, with the detection of gravitational waves by the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) detectors.

Here we collect reactions and analysis from some of the leading astronomers and astrophysicists from around the world.


Keith Riles, University of Michigan


Keith Riles explains gravitational waves.

Einstein was skeptical that gravitational waves would ever be detected because the predicted waves were so weak. Einstein was right to wonder – the signal detected on September 14, 2015 by the aLIGO interferometers caused each arm of each L-shaped detector to change by only 2 billionths of a billionth of a meter, about 400 times smaller than the radius of a proton.

It may seem inconceivable to measure such tiny changes, especially with a giant apparatus like aLIGO. But the secret lies in the lasers (the real “L” in LIGO) that are projected down each arm.

Fittingly, Einstein himself indirectly helped make those lasers happen, first by explaining the photoelectric effect in terms of photons (for which he earned the Nobel Prize), and second, by creating (along with Bose) the theoretical foundation of lasers, which create coherent beams of photons, all with the same frequency and direction.

In the aLIGO arms there are nearly a trillion trillion photons per second impinging on the mirrors, all sensing the precise positions of the interferometer mirrors. It is this collective, coherent sensing that makes it possible to determine that one mirror has moved in one direction, while a mirror in the other arm has moved in a different direction. This distinctive, differential motion is what characterizes a gravitational wave, a momentary differential warp of space itself.

By normally operating aLIGO in a mode of nearly perfect cancellation of the light returning from the two arms (destructive interference), scientists can therefore detect the passage of a gravitational wave by looking for a momentary brightening of the output beam.

The particular pattern of brightening observed on September 14 agrees remarkably well with what Einstein’s General Theory of Relativity predicts for two massive black holes in the final moments of a death spiral. Fittingly, Einstein’s theory of photons has helped to verify Einstein’s theory of gravity, a century after its creation.


Amanda Weltman, University of Cape Town

The results are in and they are breathtaking. Almost exactly 100 years ago Einstein published “Die Feldgleichungen der Gravitation” in which he laid out a new theory of gravity, his General Theory of Relativity. Einstein not only improved on his predecessor, Newton, by explaining the unexpected orbit of the planet Mercury, but he went beyond and laid out a set of predictions that have shaken the very foundations of our understanding of the universe and our place in it. These predictions include the bending of light leading to lensed objects in the sky, the existence of black holes from which no light can escape as well as the entire framework for our modern understanding of cosmology.

NASA’s Hubble Space Telescope captured gravitational lensing of light, as predicted by Einstein. NASA, ESA, K. Sharon (Tel Aviv University) and E. Ofek (Caltech), CC BY

Einstein’s predictions have so far all proven true, and today, the final prediction has been directly detected, that of gravitational waves, the tiniest ripples through space; the energy radiated away by two massive heavenly bodies spiralling into each other. This is the discovery of the century, and it is perhaps poetic that one of the places it is being announced is Pisa, the very place where, according to legend, 500 years ago, Galileo dropped two massive objects to test how matter reacts to gravity.

As we bathe in the glory of this moment it is appropriate to ask, what is next for astronomy and physics and who will bring about the next revolution? Today’s discovery will become tomorrow’s history. Advanced LIGO brings a new way of testing gravity, of explaining the universe, but it also brings about the end of an era of sorts. It is time for the next frontier, with the Square Kilometre Array project finally afoot across Africa and Australia, the global South and indeed Africa itself is poised to provide the next pulse of gravity research.


Stephen Smartt, Queen’s University Belfast

Not only is this remarkable discovery of gravitational waves an extraordinary breakthrough in physics, it is a very surprising glimpse of a massive black hole binary system, meaning two black holes that are merging together.

Black holes are dark objects with a mass beyond what is possible for neutron stars, which are a type of very compact stars – about 10 km across and weighing up to two solar masses. To imagine this kind of density, think of the entire human population squeezed onto a tea spoon. Black holes are even more extreme than that. We’ve known about binary neutron stars for years and the first detection of gravitational waves were expected to be two neutron stars colliding.

What we know about black hole pairs so far comes from the study of the stars orbiting around them. These binary systems typically have black holes with masses five to 20 times that of the sun. But LIGO has seen two black holes with about 30 times the mass of the sun in a binary system that has finally merged. This is remarkable for several reasons. It is the first detection of two merging black holes, it is at a much greater distance than LIGO expected to find sources, and the total mass in the system is also much larger than expected.

This raises interesting questions about the stars that could have produced this system. We know massive stars die in supernovae, and most of these supernovae (probably at least 60%) produce neutron stars. The more massive stars have very large cores that collapse and are too massive to be stable neutron stars so they collapse all the way to black holes.

But a binary system with two black holes of around 30 solar masses is puzzling. We know of massive binary star systems in our own and nearby galaxies, and they have initial masses well in excess of 100 suns. But we see them losing mass through enormous radiation pressure and they are predicted, and often observed, to end their lives with masses much smaller – typically about ten times the sun.

If the LIGO object is a pair of 30 solar mass black holes, then the stars that formed it must have been at least as massive. Astronomers will be asking – how can massive stars end their lives so big and how can they create black holes so massive? As well as the gravitational wave discovery, this remarkable result will affect the rest of astronomy for some time.


Alan Duffy, Swinburne University

The detection of gravitational waves is the confirmation of Albert Einstein’s final prediction and ends a century-long search for something that even he believed would remain forever untested.

This discovery marks not the end, but rather the beginning, of an era in which we explore the universe around us with a fundamentally new sense. Touch, smell, sight and sound all use ripples in an electromagnetic field, which we call light, but now we can make use of ripples in the background field of space-time itself to “see” our surroundings. That is why this discovery is so exciting.

The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) measured the tiny stretching of space-time by distant colliding black holes, giving them a unique view into the most extreme objects in general relativity.

The exact “ringing” of space-time as the ripples pass through the detector test this theory and our understanding of gravity in ways no other experiment can.

We can even probe the way galaxies grow and collide by trying to measure the gravitational waves from the even larger collisions of supermassive black holes as the galaxies they are contained in smash together.

Australia in particular is a leading nation in this search, using distant pulsars as the ruler at the Parkes telescope.

The LIGO detectors are sensitive to the minute ripples in space-time caused by the merging of two black holes. University of Birmingham Gravitational Waves Group, Christopher Berry

Tara Murphy, University of Sydney

In addition to binary black holes, aLIGO will detect gravitational waves from other events such as the collision of neutron stars, which are the dense remnants left over when a massive stars collapse.

Astronomers think that two neutron stars colliding may trigger a gamma-ray burst, which we can detect with “regular” telescopes.

Simulation of neutron stars colliding. Credit: NASA

In Australia, we have been using the Murchison Widefield Array and the Australian Square Kilometre Array Pathfinder) to follow-up aLIGO candidates.

aLIGO is an incredibly sensitive instrument but it has very poor ability to determine where the gravitational waves are coming from. Our radio telescopes can scan large areas of sky extremely quickly, so can play a critical part in identifying the event.

This project has been like no other one I have worked on. When aLIGO identifies a candidate, it sends out a private alert to an international network of astronomers. We respond as quickly as possible with our telescopes, scanning the region the event is thought to have occurred in, to see if we can detect any electromagnetic radiation.

Everything is kept top secret – even the other people using our telescopes are not allowed to know where we are pointing them.

To make sure their complex processing pipeline was working correctly, someone in the aLIGO team inserted fake events into the process. Nobody on the team, or those of us doing follow-up, had any idea whether what we were responding to was real or one of these fake events.

We are truly in an era of big science. This incredible result has been the work of not only hundreds of aLIGO researchers and engineers, but hundreds more astronomers collaborating around the globe. We are eagerly awaiting the next aLIGO observing run, to see what else we can find.


Tamara Davis, University of Queensland

Rarely has a discovery been so eagerly anticipated.

When I was a university undergraduate, almost 20 years ago, I remember a physics lecturer telling us about the experiments trying to detect gravitational waves. It felt like the discovery was imminent, and it was one of the most exciting discoveries that could be made in physics.

Mass and energy warping the fabric of space is one of the pieces of general relativity that most captures the imagination. However, while it has enormous explanatory power, the reality of that curvature is hard to grasp or confirm.

For the last few months I’ve had to sit quietly and watch as colleagues followed up the potential gravitational wave signal. This is the one and only time in my scientific career that I wasn’t allowed to talk about a scientific discovery in progress.

But that’s because it is such a big discovery that we had to be absolutely sure about it before announcing it, lest we risk “crying wolf”.

Every last check had to be done, and of course, we didn’t know whether it was a real signal, or a signal injected by the experimenters to keep us on our toes, test the analysis and follow-up.

I work with a project called the Dark Energy Survey, and with our massive, wide-field, half-billion pixel camera on a four metre telescope in Chile, my colleagues took images trying to find the source of the gravitational waves.

The wide-field is important, because the gravitational wave detectors aren’t very good at pinpointing the exact location of the source.

Unfortunately if it was a black hole merger, we wouldn’t expect to see any visible light.

Now that we’re in the era of detecting gravitational waves, though, we’ll be able to try again with the next one.


Maria Womack, University of South Florida

This is a momentous change for astronomy. Gravitational-wave astronomy can now truly begin, opening a new window to the universe. Normal telescopes collect light at different wavelengths, such as Xray, ultraviolet, visible, infrared and radio, collectively referred to as electromagnetic radiation (EM). Gravitational waves are emitted from accelerating mass analogous to the way electromagnetic waves are emitted from accelerating charge; both are emitted from accelerating matter.

The most massive objects with the highest accelerations will be the first events detected. For example, Advanced LIGO, funded by the U.S. National Science Foundation, can detect binary black holes in tight, fast orbits. GWs carry away energy from the orbiting pair, which in turn causes the black holes to shrink their orbit and accelerate even more, until they merge in a violent event, which is now detectable on Earth as a whistling “chirp.”

An example signal from an inspired gravitational wave source. A. Stuver/LIGO, CC BY-ND

The gravitational-wave sky is completely uncharted, and new maps will be drawn that will change how we think of the universe. GWs might be detected coming from cosmic strings, hypothetical defects in the curvature of space-time. They will also be used to study what makes some massive stars explode into supernovae, and how fast the universe is expanding. Moreover, GW and traditional telescopic observing techniques can be combined to explore important questions, such as whether the graviton, the presumed particle that transmits gravity, actually have mass? If massless, they will arrive at the same time as photons from a strong event. If gravitons have even a small mass, they will arrive second.


Daniel Kennefick, University of Arkansas

Almost 100 years ago, in February 1916, Einstein first mentioned gravitational waves in writing. Ironically it was to say that he thought they did not exist! Within a few months he changed his mind and by 1918 had published the basis of our modern theory of gravitational waves, adequate to describe them as they pass by the Earth. However his calculation does not apply to strongly gravitating systems like a binary black hole.

Albert Einstein was the original theorist who started the hunt for gravitational waves.

It was not until 1936 that Einstein returned to the problem, eventually publishing one of the earliest exact solutions describing gravitational waves. But his original sceptical attitude was carried forward by some of his former assistants into the postwar rebirth of General Relativity. In the 1950s, doubts were expressed as to whether gravitational waves could carry energy and whether binary star systems could even generate them.

One way to settle these disputes was to carry out painstaking calculations showing how the emission of gravitational waves affected the motion of the binary system. This proved a daunting challenge. Not only were the calculations long and tedious, but theorists found they needed a much more sophisticated understanding of the structure of space-time itself. Major breakthroughs included the detailed picture of the asymptotic structure of space-time, and the introduction of the concept of matched asymptotic expansions. Prior to breakthroughs such as these, many calculations got contradictory results. Some theorists even got answers that the binary system should gain, not lose, energy as a result of emitting gravitational waves!

While the work of the 1960s convinced theorists that binary star systems did emit gravitational waves, debate persisted as to whether Einstein’s 1918 formula, known as the quadrupole formula, correctly predicted the amount of energy they would radiate. This controversy lasted into the early 1980s and coincided with the discovery of the binary pulsar which was a real-life system whose orbit was decaying in line with the predictions of Einstein’s formula.

In the 1990s, with the beginnings of LIGO, theorists' focus shifted to providing even more detailed corrections to formulas such as these. Researchers use descriptions of the expected signal as templates which facilitate the extraction of the signal from LIGO’s noisy data. Since no gravitational wave signals had ever been seen before, theorists found themselves unusually relevant to the detection project – only they could provide such data analysis templates.


David Parkinson, University of Queensland

Gravitational waves can be used to provide a direct probe of the very early universe. The further away we look, the further back in time we can see. But there is a limit to how far back we can see, as the universe was initially an opaque plasma, and remained so even as late as 300,000 years after the Big Bang.

This surface, from which the cosmic microwave background is emitted, represents the furthest back any measurement of electromagnetic radiation can directly investigate.

But this plasma is no impediment for gravitational waves, which will not be absorbed by any intervening matter, but come to us directly. Gravitational waves are predicted to be generated by a number of different mechanisms in the early universe.

For example, the theory of cosmic inflation, which suggests a period of accelerated expansion moments after the Big Bang, goes on to predict not just the creation of all structure that we see in the universe, but also a spectrum of primordial gravitational waves.

It is these primordial gravitational waves that the BICEP2 experiment believed it had detected in March 2014.

BICEP2 measured the polarisation pattern of the cosmic microwave background, and reported a strong detection of the imprint of primordial gravitational waves. These results turned out in fact to be contamination by galactic dust, and not primordial gravitational waves.

But there is every reason to believe that future experiments may be able detect these primordial gravitational waves, either directly or indirectly, and so provide a new and complementary way to understand the physics of the Big Bang.

Keith Riles, Professor of Physics, University of Michigan; Alan Duffy, Research Fellow, Swinburne University of Technology; Amanda Weltman, SARChI in Physical Cosmology, Department of Mathematics and Applied Mathematics, University of Cape Town; Daniel Kennefick, Associate Professor of Physics, University of Arkansas; David Parkinson, Researcher in astrophysics, The University of Queensland; Maria Womack, Research Professor of Physics, University of South Florida; Stephen Smartt, Professor of Physics and Mathematics, Queen's University Belfast; Tamara Davis, Professor, The University of Queensland, and Tara Murphy, Associate Professor and ARC Future Fellow, University of Sydney

This article was originally published on The Conversation. Read the original article.

Browse articles by author

More Essays

Mar 10th 2021
EXTRACT: "Although around one in 14 people over 65 have Alzheimer’s disease, there’s still no cure, and no way to prevent the disease from progressing. But a recent study may bring us one step closer to preventing Alzheimer’s. The trial, which was conducted on animals, has found a specific molecule can prevent the buildup of a toxic protein known to cause Alzheimer’s in the brain."
Feb 24th 2021
EXTRACT: "The art historian George Kubler observed that scholars in the humanities “pretend to despise measurement because of its ‘scientific’ nature.” As if to illustrate his point Robert Storr, former dean of Yale’s School of Art, declared that artistic success is “completely unquantifiable.” In fact, however, artistic success can be quantified, in several ways. One of these is based on the analysis of texts produced by art scholars, and this measure can give us a systematic understanding of how changes in recent art have produced changes in the canon of art history."
Feb 24th 2021
EXTRACT: "The most politically sensitive option we looked at was the virus escaping from a laboratory. We concluded this was extremely unlikely."
Feb 16th 2021
EXTRACT: ".... these men were completely unaware that they had put their lives in the hands of doctors who not only had no intention of healing them but were committed to observing them until the final autopsy – since it was believed that an autopsy alone could scientifically confirm the study’s findings. As one researcher wrote in a 1933 letter to a colleague, “As I see, we have no further interest in these patients until they die.” ...... The unquestionable ethical failure of Tuskegee is one with which we must grapple, and of which we must never lose sight, lest we allow such moral disasters to repeat themselves. "
Feb 14th 2021
EXTRACT: "In 2010 Carlos Rodriguez, the president of Buenos Aires' Universidad del CEMA, created the world's first - and only - Center for Creativity Economics.  During the next ten years, the CCE presented a number of short courses and seminars.  But the most important of its events was an annual lecture by an Argentine artist, who was given a Creative Career Award."
Feb 11th 2021
EXTRACT: "It’s not hard to see why. Although AI systems outperform humans in tasks that are often associated with a “high level of intelligence” (playing chess, Go, or Jeopardy), they are nowhere close to excelling at tasks that humans can master with little to no training (such as understanding jokes). What we call “common sense” is actually a massive base of tacit knowledge – the cumulative effect of experiencing the world and learning about it since childhood. Coding common-sense knowledge and feeding it into AI systems is an unresolved challenge. Although AI will continue to solve some difficult problems, it is a long way from performing many tasks that children undertake as a matter of course."
Feb 7th 2021
EXTRACT: "When it comes to being fit and healthy, we’re often reminded to aim to walk 10,000 steps per day. This can be a frustrating target to achieve, especially when we’re busy with work and other commitments. Most of us know by now that 10,000 steps is recommended everywhere as a target to achieve – and yet where did this number actually come from?"
Feb 5th 2021
EXTRACT: "This so-called elite supposedly conspires to monopolise academic employment and research grants. Its alleged objective is to deny divine authority, and the ultimate beneficiary and prime mover is Satan.Such beliefs derive from the doctrine of biblical infallibility, long accepted as integral to the faith of numerous evangelical and Baptist churches throughout the world, including the Free Church of Scotland. But I would argue that the present-day creationist movement is a fully fledged conspiracy theory. It meets all the criteria, offering a complete parallel universe with its own organisations and rules of evidence, and claims that the scientific establishment promoting evolution is an arrogant and morally corrupt elite."
Jan 29th 2021
EXTRACT: "Ageing is so far known to be caused by nine biological mechanisms, sometimes called the “hallmarks of ageing”. In order to prevent ageing in our tissues, cells, and molecules, we need to be able to slow or prevent these hallmarks of ageing from taking place. While there are numerous treatments currently being investigated, two approaches currently show the most promise in slowing the development of age-related disease. .... One area researchers are investigating is looking at whether any medicines already exist which could tackle ageing. This method is advantageous in that billions of pounds have already been spent on testing the safety and efficacy of these drugs and they are already in routine clinical use in humans. Two in particular are promising candidates."
Jan 23rd 2021
EXTRACT: "The ageing global population is the greatest challenge faced by 21st-century healthcare systems. Even COVID-19 is, in a sense, a disease of ageing. The risk of death from the virus roughly doubles for every nine years of life, a pattern that is almost identical to a host of other illnesses. But why are old people vulnerable to so many different things? It turns out that a major hallmark of the ageing process in many mammals is inflammation. By that, I don’t mean intense local response we typically associate with an infected wound, but a low grade, grinding, inflammatory background noise that grows louder the longer we live. This “inflammaging” has been shown to contribute to the development of atherosclerosis (the buildup of fat in arteries), diabetes, high blood pressure , frailty, cancer and cognitive decline."
Jan 20th 2021
EXTRACT: "Anthropos is Greek for human.... The term is used to convey how, for the first time in history, the Earth is being transformed by one species – homo sapiens. ...... The idea of the Anthropocene can seem overwhelming and can generate anxiety and fear. It can be hard to see past notions of imminent apocalypse or technological salvation. Both, in a sense, are equally paralysing – requiring us to do nothing. .. I consider the Anthropocene as an invitation to think differently about human relationships with nature and other species. Evidence suggests this reorientation is already happening and there are grounds for optimism."
Jan 7th 2021
EXTRACT: "During the second world war, Nazi Germany banned all listening to foreign radio stations. Germans who overlooked their duty to ignore foreign broadcasts faced penalties ranging from imprisonment to execution. The British government imposed no comparable ban which would have been incompatible with the principles for which it had gone to war. That’s not to say, though, that it wasn’t alarmed by the popularity of German stations. Most effective among the Nazis broadcasting to the UK was William Joyce. This Irish-American fascist, known in Britain as “Lord Haw-Haw”, won a large audience during the “phoney war” in 1939 and early 1940, with his trademark call sign delivered in his unmistakable accent: 'Jairmany calling, Jairmany calling'. "
Jan 6th 2021
EXTRACTS: "The revelation of Trump’s hour-long recorded call with Brad Raffensperger, Georgia’s Secretary of State, over this past weekend crossed a new line – a line that not only set a high-water mark of moral reprehensibility, but a legal line as well, specifically in his pressuring Raffensperger to 'find the 11,780 votes' that would hand Trump the state and his veiled threat (' it’s going to be very costly…') if Raffensperger failed to comply. ........ Raffensperger – who has been forced to endure intense pressure, intimidation and threats – has proven himself to be a man of integrity and principle."
Jan 6th 2021
EXTRACT: "A final, perhaps more sinister, possibility is that Johnson knows exactly what he is doing. His political style evokes a unique blend of dishevelled buffoon and privileged Etonian. He is someone who likes to bring good news and doesn’t take life too seriously. Making tough, controversial decisions threatens this persona and so hiding in the shadows until his hand is forced helps him to reconcile his identity threat."
Dec 21st 2020
EXTRACT: "The resultant loss of land, the growing impoverishment of its citizens, and the hostile actions of Israeli occupation forces and settlers have forced many Bethlehemites to leave their beloved city and homeland. Given these accumulated violations of human rights and their impact on Christians and Muslims, alike, one might expect Christians in the West to speak out in defense of these residents of the little town they celebrate each year.  That, sadly, is not to be – most especially (and I might add ironically) among powerful Christian conservative groups in the US which, after all, claim to be the defenders of their co-religionists world-wide."
Dec 7th 2020
EXTRACT: "Worldwide, people donate hundreds of billions of dollars to charity. In the United States alone, charitable donations amounted to about $450 billion last year. As 2020 draws to a close, perhaps you or members of your family are considering giving to charity. But there are, literally, millions of charities. Which should you choose?"
Dec 1st 2020
EXTRACT: " The Museum of Modern Art is currently presenting Félix Fénéon: The Anarchist and the Avant-Garde – From Signac to Matisse and Beyond, examining the immense influence of this art critic, editor, publisher, collector and anarchist............A crucial feature of anarchism is the emphasis on the individual as the fundamental building block, the essential point of departure for any human association whatever. The individual was characterized by Grave in 1899 as a social creature who should be “left free to attach himself according to his tendencies, his affinities, free to seek out those with him whom his liberty and aptitudes can agree.” "
Nov 25th 2020
EXTRACT: "As the pandemic raged in April, churchgoers in Ohio defied warnings not to congregate. Some argued that their religion conferred them immunity from COVID-19. In one memorable CNN clip, a woman insisted she would not catch the virus because she was “covered in Jesus’ blood”. "
Nov 18th 2020
EXTRACT: "Here are just a few ways exercise changes the structure of our brain."