Jan 21st 2015

The “Impact” Illusion in Science

by Henry I. Miller

Henry I. Miller, a physician and molecular biologist, is a fellow in scientific philosophy and public policy at Stanford University’s Hoover Institution, and was the founding director of the Office of Biotechnology at the US Food and Drug Administration.

STANFORD – Government-funded scientific research runs the gamut from studies of basic physical and biological processes to the development of applications to meet immediate needs. Given limited resources, grant-making authorities are always tempted to channel a higher proportion of funds toward the latter. And, faced with today’s tight budget constraints, the inclination to favor projects that have demonstrable short-term returns is arguably stronger now than in the past. But to succumb to it is a mistake. Some of science’s most useful breakthroughs have come as a result of sustained investment in basic research or as by-products of unrelated efforts.

Indeed, evaluating the impact of any research project is difficult. As Marc Kirschner, a professor at Harvard Medical School, pointed out in a thoughtful editorial in the journal Science: “One may be able to recognize good science as it happens, but significant science can only be viewed in the rear-view mirror.”

Even preeminent researchers may underestimate the significance of their findings at the time they obtain them. When Salvador Luria, my university microbiology professor, received the 1969 Nobel Prize in Physiology or Medicine, he made the point eloquently, sending a humorous cartoon to all who had congratulated him on the award. It depicted an elderly couple at the breakfast table. The husband, reading the morning newspaper, exclaims, “Great Scott! I’ve been awarded the Nobel Prize for something I seem to have said, or done, or thought, in 1934!”

Discoveries can come from unforeseen directions, as seemingly unrelated and obscure research areas intersect unexpectedly. In a 2011 editorial, the French biologist François Jacob described the research that led to his 1965 Nobel Prize in Physiology or Medicine. His lab had been working on the mechanism that under certain circumstances causes the bacterium E. coli suddenly to produce bacterial viruses. At the same time, another research group was analyzing, also in E. coli, how the synthesis of a certain enzyme is induced in the presence of a specific sugar.

As Jacob put it, “The two systems appeared mechanistically miles apart. But their juxtaposition would produce a critical breakthrough for our understanding of life.” Thus was born the concept of an “operon,” a cluster of genes whose expression is regulated by an adjacent regulatory gene.

Another quintessential example of both the synergy and serendipity of basic research is the origin of recombinant DNA technology, the prototypical technique of modern genetic engineering (sometimes called “genetic modification,” or GM). It resulted from a combination of findings in several esoteric, largely unrelated areas of basic research in the early 1970s. Research in enzymology and nucleic acid chemistry led to techniques for cutting and rejoining segments of DNA. Advances in fractionation procedures permitted the rapid detection, identification, and separation of DNA and proteins. And the accumulated knowledge of microbial physiology and genetics allowed foreign DNA to be introduced into a cell and made to function there.

The result was the birth of modern biotechnology. Over the last 40 years, recombinant DNA technology has revolutionized numerous industrial sectors, including agriculture and pharmaceuticals. It has enabled the development of vaccines against infectious diseases and drugs that treat non-infectious illnesses like diabetes, cancer, cystic fibrosis, psoriasis, rheumatoid arthritis, and some genetic disorders.

Another example is the creation of hybridomas, hybrid cells created in the laboratory by fusing normal white blood cells that produce antibodies with a cancer cell. Researchers wanted to combine the cancer cells’ rapid growth and the normal cells’ ability to dictate the production of a single specific “monoclonal” antibody. Their goal was to learn more about the rates of cellular mutation and the generation of antibody diversity.

But, as it turned out, these immortal, antibody-producing cells were useful not only for scientific inquiry, but also as a novel technological instrument for a variety of medical and industrial applications. Indeed, the technology has led to the development of highly specific diagnostic tests; blockbuster anti-cancer drugs such as Rituxan (rituximab), Erbitux (cetuximab), and Herceptin (trastuzumab); and Avastin (bevacizumab), which is widely used to treat both cancer and diseases of the retina that commonly cause blindness.

In his editorial, Kirschner bemoaned the “tendency to equate significance to any form of medical relevance,” noting that it caused research into non-mammalian systems to be treated “as intrinsically less valuable than studies on human cells.” As a result, simple but informative model systems can be overlooked, and an important link between basic science and human medicine can be lost.

The past century of research on various non-mammalian model systems makes this point persuasively. For example, studies of Caenorhabditis elegans, a tiny roundworm, have provided a wealth of information on cellular differentiation, neural networks, meiosis, and programmed cell death. Studies of the fruit fly, Drosophila melanogaster, have significantly advanced our understanding of the mechanisms underlying Mendelian genetics.

The amount of money funneled by governments into research is large. In the United States, the National Institutes of Health spends roughly $30 billion a year, and the National Science Foundation adds another $7 billion. As officials decide how that money is to be spent, they would be wise to glance in the rear-view mirror and fund the basic research that keeps science moving forward.


Copyright: Project Syndicate, 2015.
www.project-syndicate.org

 


This article is brought to you by Project Syndicate that is a not for profit organization.

Project Syndicate brings original, engaging, and thought-provoking commentaries by esteemed leaders and thinkers from around the world to readers everywhere. By offering incisive perspectives on our changing world from those who are shaping its economics, politics, science, and culture, Project Syndicate has created an unrivalled venue for informed public debate. Please see: www.project-syndicate.org.

Should you want to support Project Syndicate you can do it by using the PayPal icon below. Your donation is paid to Project Syndicate in full after PayPal has deducted its transaction fee. Facts & Arts neither receives information about your donation nor a commission.

 

 

Browse articles by author

More Current Affairs

Nov 9th 2009

Google seems like the last employer on earth that would promote slowness at work.

Nov 6th 2009
To: Democratic Members of Congress
Re: Your Vote on Health Insurance Reform
Nov 5th 2009

As Jon Stewart put it, "so when does 'hope' turn into 'change'?" As Arianna points out, we still don't know.

Nov 4th 2009

Yesterday (Editor's note: Nov 3, 2009) the US Congress gravely insulted hundreds of civilians who were wounded or killed in the most recent war in the Middle East.

Nov 4th 2009

On Sunday, Ariana Huffington and I shared a platform about transformative presidencies at a Truman Library forum in Kansas City.

Nov 3rd 2009
As I watched Barack Obama's victory speech, I thought that America was on the brink of a new progressive era. I believe that just as strongly one year later.
Oct 31st 2009

At least 2,000 people a day are killed with weapons by criminal gangs, bandits, terrorists, insurgents -- and their own governments. In Africa alone $18 billion is consumed through armed conflict, about the same amount as non-military foreign aid.

Oct 30th 2009


This film by the documentary-maker Martin Durkin presents the arguments of scientists and commentators who don't believe that CO2 produced by human activity is the main cause of climate change.

Wikipedia writes about the film the following:

Oct 29th 2009

We woke up this morning with images on cable news and the Internet of President Obama solemnly saluting as the casket of a fallen soldier was carried in honor from a C-

Oct 29th 2009

UNITED NATIONS - For the 18th consecutive year, the UN General Assembly condemned the US economic embargo against Cuba. The 187 countries voting in favor were friends and foes, democracies and dictatorships.

Oct 28th 2009

It is a rare human act that is utterly reprehensible. Some glimmer of grace, some hope for redemption shines through nearly all of our efforts.

Oct 28th 2009
The recent controversy over the huge bonuses at financial firms like AIG and J.P.
Oct 24th 2009

Earlier this month, what should have been a multinational exhibit of military cooperation between the Turkish Air Force and its counterparts in the US, Italy, and Israel, has become yet another political snub in the growing public rift between Turkey and Israel.

Oct 20th 2009
From the beginning of the "Reagan Revolution" in 1980 until the election of Barack Obama, Progressives were in a defensive crouch. The ideas and values of the right wing were predominant.
Oct 15th 2009

President Barack Obama's adviser on Muslim affairs, Dalia Mogahed, has provoked controversy by appearing on a British television show hosted by a member of an extremist group to talk about Sharia law, the Daily Telegraph reported on October 8, 2009.

Oct 13th 2009

Statins are currently taken by 4 million people in Britain but family doctors are being financially incentivised to prescribe them to a further 1.4 million. One government advisor has claimed that they should be offered to all men over age 50 and women over age 60.

Oct 13th 2009

The immigrant experience in America is a topic rich in meaning. For me, it is personal, since my understanding has been informed both by my family's story and my work of several decades.